UV-VIS (electron spectroscopy)

Introduction

Spectral Region:
Vacuum UV: 190-100 nm
UV: 400-190 nm
Visible: 400-800 nm

Electron excitation - transitions of valence electrons
To detect the presence of the conjugated hydrocarbons

Beer's Law

$A=\log (1 / T)=\log \left(I_{0} / I\right)=\varepsilon \cdot c \cdot b$
A: absorbance or optical density
ε : molar absorptivity or extinction coefficient
c: concentration in mole/L
b: path length of sample cell in cm unit

Peak intensity $\sim \varepsilon$: molar absorptivity [L/(mole $\cdot \mathrm{cm})$]
Transition probability $\left(10^{0} \sim 10^{4}\right)$ $\varepsilon>10^{4}$ very strong, $\varepsilon<10^{3}$ weak (forbidden)

Additive rules in Beer's law
$\mathrm{A}_{\text {toal }}=\mathrm{b}\left(\varepsilon_{1} \cdot \mathrm{c}_{1}+\varepsilon_{2} \cdot \mathrm{c}_{2}\right)$

Exceptions of Beer's law

1. complex formation with solvents (hydrogen bonding)
2. fluorescent compound
3. acid-base equilibrium - isobestic point (λ whose A does not change with pH)
(1) Sample Handling
(1) UV cell

Quartz cell ($\lambda>210 \mathrm{~nm}$) or fused silica, tridymite, crystobullite
Cell length: 1 cm ; requires 3 mL of solution
(2) Solvents (high purity spectral grade)

solvent	cut off	solvent	cut off
Hexane	187	CCl_{4}	245
CHCl_{3}	223	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	215
$\mathrm{EtOH}(95 \%)$	198	MeOH	198
H 2 O	197	dioxane	215
iso-octane	195		

(2) Presentation of Spectra

Sample presentation:
Calculate a concentration for the expected ε.
Most accurate measurement can be carried out at the Absorbance $\mathbf{A} \approx \mathbf{1 . 0}$
Alkyl-substituted unconjugated carbonyl compounds $\varepsilon \approx 12$
$\mathbf{c}=\mathbf{A} / \boldsymbol{\varepsilon} \cdot \mathbf{b}=\mathbf{1 . 0} /[\mathbf{1 2}(\mathrm{L} / \mathrm{mol} \cdot \mathrm{cm}) \times 1.0(\mathrm{~cm})]=0.0833 \mathrm{~mole} / \mathrm{L}$

For acetone (MW 58),
$0.0833 \mathrm{~mole} / \mathrm{L}=0.0833(\mathrm{~mole} / \mathrm{L}) \times 58(\mathrm{~g} / \mathrm{mole})=4.83(\mathrm{~g} / \mathrm{L})=\mathbf{0 . 1 2 0} \mathbf{g} / 25 \mathrm{~mL}$

Observed value
$\lambda_{\text {max }}=274 \mathrm{~nm}, \varepsilon=\mathrm{A} / \mathrm{c} \cdot \mathrm{b}=1.391 /[0.0833(\mathrm{~mole} / \mathrm{L}) \times 1(\mathrm{~cm})]=16.7 \mathbf{L} /(\mathrm{mole} \cdot \mathrm{cm})$
(3) Spectrometer Design

Light source: hydrogen discharge tube
Continuous band 160~360 nm
Incandescent sources > 360 nm
Detector: photomultiplier tube
(4) Vocabulary

Terms for spectral phenomena
Chromophore: Functional group that absorbs UV light ($\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{O}, \mathrm{NO}_{2}$) - unsaturated groups
Bathochromic Shift: Red shift (to longer wavelength or lower energy)
Auxochrome: Auxiliary functional group that interacts with a chromophore causing bathochromic shift $\left(\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{Cl}\right)$ - saturated group with nonbonded electrons.
Hypsochromic Shift: Blue shift (to shorter wavelength or higher energy)
Hyperchromic Effect: Enhancement in ε.
Hypochromic Effect: Decrease in ε.
(5) Transitions in UV spectroscopy
$\pi \rightarrow \pi^{*}$ (K band)
$\sigma \rightarrow \sigma^{*} \quad \lambda<150 \mathrm{~nm}$
$\left.\begin{array}{l}\mathrm{n} \rightarrow \pi^{*}(\mathrm{R} \text { band) } \\ \mathrm{n} \rightarrow \sigma^{*}\end{array}\right] \quad$ forbidden, $\varepsilon=100 \sim 3000$
n from hetero atoms: $\mathrm{O}, \mathrm{N}, \mathrm{S}, \mathrm{X}$
$\mathrm{n} \rightarrow \sigma^{*}$

Compound	$\lambda \max (\varepsilon)$	Compound	$\lambda \max (\varepsilon)$
$\mathrm{CH}_{3} \mathrm{OH}$	$177 \mathrm{~nm}(200)$	$\mathrm{CH}_{3} \mathrm{Cl}$	$173 \mathrm{~nm}(200)$
$\mathrm{Bu}_{2} \mathrm{~S}$	$210,229(1,200)$	$n \mathrm{Pr}-\mathrm{Br}$	$208(300)$
$\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{SH}$	$224(126)$	$\mathrm{CH}_{3} \mathrm{I}$	$259(400)$
$\mathrm{Me}_{3} \mathrm{~N}$	$199(3,950)$		

(6) The Ethylene Chromophore

$$
\left\{\begin{array}{l}
\mathrm{n} \rightarrow \sigma^{*} \\
\pi \rightarrow \pi^{*} \\
\mathrm{n} \rightarrow \pi^{*}
\end{array}\right.
$$

$\lambda=228 \mathrm{~nm}$
$\varepsilon=8,000$
bathochromic shift
(7) Absorptions in Dienes (Based on Simple Huckel MO Theory)

$$
\begin{gathered}
\Delta \mathrm{E}=0.890 \beta \\
251 \mathrm{~nm}
\end{gathered}
$$

(8) Woodward's Rules for Dienes

<Empirical Rules>
Base: Conjugated Diene $\rightarrow 217 \mathrm{~nm}$
(1) add 5 nm for each alkyl substituent
(2) add 5 nm for each exocyclic double bond

Cal. $217+5 \times 2=227 \mathrm{~nm}$
Obs. 226 nm

Cal. $217+5=222 \mathrm{~nm}$
Obs. 223.5 nm

Cal. $217+5 \times 2+5=232 \mathrm{~nm}$
Obs. 236.5 nm

Cal. $217+5 \times 2=227 \mathrm{~nm}$
Obs. 227 nm

Cal. $217+5 \times 3=232 \mathrm{~nm}$
Obs. 235 nm

Cal. $217+4 \times 5+5 \times 2=247 \mathrm{~nm}$
Obs. 248 nm

(9) Woodward and Fieser Rules for Cyclic Conjugated System

Base: conjugated cyclic dienes (steroid systems)

Homo-annular diene 253 nm

Hetero-annular diene 214 nm
(1) Add 5 for each alkyl group of ring residue
(2) Add 30 for each additional double bond in conjugation
(3) Add 5 for each exocyclic double bond
(4) Polar groups

OAc $(+0), \mathrm{OR}(+6), \mathrm{SR}(+30), \mathrm{Cl}, \mathrm{Br}(+5), \mathrm{NR}_{2}(+60)$

Cal. $253+5 \times 4+5 \times 2=283$
Obs. 282, $\varepsilon=11,900$

Cal. $214+5 \times 3+5=234$
Obs. 234, $\varepsilon=20,000$

Cal. $253+30+5 \times 5+5 \times 3=323$
Obs. $324, \varepsilon=11,800$

Cal. $253+30 \times 2+5 \times 5+5 \times 3=353$
Obs. 355

Cross-conjugation

Cal. $253+5 \times 4+5 \times 2=283$
Obs. $285, \varepsilon=9,100$
<Exceptions>
Strained Molecules - Away form coplanar

Cal. $217+5 \times 2+5 \times 2=237$
Obs. $220, \varepsilon=10,050$

Cal. $217+5 \times 2+5 \times 2=237$
Obs. 243

The above rules work reasonably well for the conjugated polyenes containing four carbon-carbon double bonds or less.

For polyenes containing more than four carbon-carbon double bonds \rightarrow

Fieser-Kuhn rule

```
\(\lambda_{\text {max }}=114+5 M+\mathbf{n}(48.0-1.7 n)-16.5 R(\) endo \()-10 R(\) exo \()\)
\(\varepsilon_{\text {max }}=\left(1.74 \times 10^{4}\right) \mathrm{n}\)
```

[n : number of conjugated carbon-carbon double bonds
M : number of alkyl or alkyl-like substituents on the conjugated system
$R($ endo): number of rings with endocyclic double bonds in the conjugated system
$R(e x o)$: number of rings with exocyclic double bonds in the conjugated system

Lycopene

β-Carotene

$$
\begin{aligned}
& \lambda_{\max }(\mathrm{cal})=114+5 \times 10+11 \times(48.0-1.7 \times 11)-16.5 \times 2=453.3 \mathrm{~nm} \\
& \lambda_{\max }(\mathrm{obs})=452 \mathrm{~nm}(\text { hexane }) \\
& \varepsilon_{\max }(\mathrm{cal})=\left(1.74 \times 10^{4}\right) \times 11=19.1 \times 10^{4} \\
& \varepsilon_{\max }(\mathrm{obs})=15.2 \times 10^{4} \text { (hexane) }
\end{aligned}
$$

(10) Absorption of Carbonyl Groups

$\pi *$

K band: $\pi \rightarrow \pi^{*}(150 \mathrm{~nm})$
R band: $\mathrm{n} \rightarrow \pi^{*}$ (lower E, 279 nm ; forbidden $\varepsilon=10 \sim 1,000$)

Solvent Effect
Solvent polarity

solvent	$\pi \rightarrow \pi^{*}$	ε	$\mathrm{n} \rightarrow \pi^{*}$	ε
Hexane	229.5	12,600	327	97.5
Diethyl ether	230	12,600	326	96
EtOH	237	12,600	315	78
MeOH	238	10,700	312	74
$\mathrm{H}_{2} \mathrm{O}$	244.5	10,000	305	50

$$
\mathrm{n} \rightarrow \pi^{*} \text { Transition (} \mathrm{R} \text { band) }
$$

$$
\lambda_{\max }=285 \mathrm{~nm} \quad \varepsilon_{\max }=14 \text { (hexane) }
$$

Effect of Halogen Substitution

| X | eq | ax |
| :--- | :--- | :--- | :--- |
| Cl | -7 | +22 |
| Br | -5 | +28 |
| OH | -12 | +17 |
| OAc | -5 | +10 |

α-Diketones and α-Ketoaldehydes
$\mathrm{n} \rightarrow \pi^{*}$ Transition (R band)
Angle dependent

$$
\begin{array}{ll}
\phi=0 \sim 10^{\circ} & \lambda \max =488 \mathrm{~nm} \\
\phi=90^{\circ} & \lambda \max =370 \mathrm{~nm}
\end{array}
$$

1) biacetyl (s-trans conformation) $\phi=180^{\circ}$

2) bicyclo[2.2.1]heptane $\phi=10^{\circ}$

3) $\phi=90^{\circ}$

$$
\lambda \max =370 \mathrm{~nm} \quad \varepsilon=40
$$

β-Diketones

$\pi \rightarrow \pi^{*}(\mathrm{~K}$ band $)$

15% in $\mathrm{H}_{2} \mathrm{O}$
$91 \sim 92 \%$ in vapor phase
or in non-polar solvent

$$
\begin{array}{ll}
\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right)=274 \mathrm{~nm}, & \varepsilon_{\max }=2,050 \\
\lambda_{\max }(\text { iso-octane })=272 \mathrm{~nm}, & \varepsilon_{\max }=12,000
\end{array}
$$

(11) Prediction of $\pi \rightarrow \pi^{*}$ Transitions in α, β-Unsaturated Ketones

Woodward \& Fieser

For enones

K band: $215 \sim 250 \mathrm{~nm}\left(\varepsilon_{\max }=10,000 \sim 20,000\right)$
R band: 310~330 nm (weak)

Parent

α, β-unsaturated ketone 215
Five-membered cyclic α, β-unsaturated ketone 202
α, β-unsaturated aldehydes 210
α, β-unsaturated carboxylic acids and esters 195

Substituents

Carbon substituent at $\alpha \quad$ add 10
Carbon substituent at $\beta \quad$ add 12
Carbon substituent at γ and $\delta \quad$ add 18
Exocyclic double bond add 5
Double bond extending conjugation add 30

Substituents	α	β	γ	δ
OH	+35	+30		+50
OAc	+6	+6		+6
OMe	+35	+30	+17	+31
SR		+85		
Cl	+15	+12		
Br	+25	+30		
NR_{2}		+95		

Solvent corrections

Alcohol	0	Hexane	-11	CHCl_{3}	-1
water	+8	Ether	-7	dioxane	-5

Examples

$215+10+12+5=242$
Observed: 240

 $215+30+12+18+5=280$
Observed: 280
(12) Aromatic Compounds

Substitution on the benzene ring produces a bathochromic shift of the B and the E bands.

Benzenoid	E_{2} band	B band	Benzenoid	E_{2} band	B band
	$204(8,800)$	$254(250)$	$208(7,900)$	$262(260)$	$211(6,200)$
258					
$(1,450)$					

Bathochromic shift of toluene is caused by the hyperconjugation of a $\sigma \mathrm{C}-\mathrm{H}$ bond participating in resonance with the benzene ring
(13) Disubstituted Benzenes

1) Without resonance interactions

Additive effect

Calculated: $230+(210-204)=236 \mathrm{~nm}$
Observed: 242 nm
2) With resonance interactions

One releasing/the other withdrawing \rightarrow greater bathochromic effect Resonance Effect

Calculated: $240+(230-204)=266 \mathrm{~nm}$
Observed: 322 nm
(14) Resonance Interactions between Aromatic Rings

(15) Charge Transfer Complexes

Donation of electrons from one set of orbital through space to another set

